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Power Output 
Reduction

Optical transmittance 
Reduction

Localised Thermal 
Hotspots

Abrasion and failure

Economic Losses

Effects of Soiling

“Accumulation of dirt, dust, debris and 
biological matter on light-collecting 
surfaces in solar panel systems.”
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Hydrophobic Coatings for PV
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 Low surface energy materials.

 Water contact greater than 90°

(hydrophobic), or greater than 150°

(superhydrophobic).

 Low roll of angle, less than ~30° (for 

self cleaning effect).

 Chemically inert.

 Environment and mechanical resistant.



Fluorinated Polymers

 Fluorinated-ethylene-propylene (FEP)

 Fluoroalkylsilane (FAS)

 Perfluoropolyether (PFPE).

 Ethylene tetrafluoroethylene (ETFE)

Hydrophobic Coating Chemistry
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Non-fluorinated Polymers

 Polydimethylsiloxane (PDMS)

 Tetraethyl orthosilicate (TEOS)

Hydrophobic Coating Chemistry

Luke Jones, Loughborough University



Samples & 
Experimentation

Luke Jones, Loughborough University



Luke Jones, Loughborough University

Coating Deposition

Soda-lime
Slides

Detergent 
Wash + DI 

Rinse

Ultrasonic
Bath

UV/Ozone 
Surface 
Clean

FAS-17
Dip Coating

PDMS (FRE)
Wipe Coating

Soda-lime
Slide

Nano SiO2 Nano SiO2
2.5wt% by solution
25-50nm Nano 
SiO2



Testing & Characterisation

 Optical Transmittance 

& Reflectance

 Water contact angle 

(WCA)

 X-ray Photoelectron 

Spectroscopy Analysis 

(XPS)

UV Test
A minimum of 15
kWh/m2 of UV
light, with 3% to
10% total energy in
UVB light range
(BS EN 61215-2)
for 1000 hours.
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Optical Transmittance & Reflectance
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Fluorinated Coatings Non-fluorinated Coatings

(Above) UV/Vis transmittance / (below) reflectance data of as deposited 
fluorinated coatings on soda-lime glass between 350-1150nm.

(Above) UV/Vis transmittance / (below) reflectance data of  as deposited 
non-fluorinated coatings on soda-lime glass between 350-1150nm.



Optical Transmittance & Reflectance

Luke Jones, Loughborough University

Fluorinated Coatings Non-fluorinated Coatings

(Above) UV/Vis weighted average transmittance of fluorinated coatings 
on soda-lime glass between 0 and 1000 hours of UV exposure.

(Above) UV/Vis weighted average transmittance of non-fluorinated 
coatings on soda-lime glass between 0 and 1000 hours of UV exposure.

WAT/R% As Deposited UV Exposed 1000 
hrs

FAS 91.2 8.2 91.8 8.2

FASn 91.3 8.2 91.9 8.1

GLS 91.9 8.3 90.3 8.3

WAT/R% As Deposited UV Exposed 1000 
hrs

FRE 92.7 7.3 92.7 7.3

FREn 91.4 7.9 92.0 8.0

GLS 91.9 8.3 90.3 8.3



Surface Hydrophobicity
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WCA

As Deposited UV Exposed 1000 hrs

θ σ θ σ

FAS 112.5 1.7 70.7 4.0

FASn 119.2 2.1 97.4 4.9

FRE 110.2 0.5 104.3 1.0

FREn 112.4 1.9 103.4 1.2

GLS 14.2 2.0 78.9 14.0

111°

WCA measurements of (top) as deposited FASn, WCA 131.0°, and (bottom) 
as deposited FRE, WCA 111.0°.



Surface Hydrophobicity
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WCA measurements of FAS, FASn, FRE and FREn coatings during UV exposure from as-deposited to 1000 hours of UV 
exposure.



Hydrophobic Fluorine Loss
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Comparison of F1s content on surface of FAS and FASn coating from 0 to 1000 hours of UV exposure.
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Loss of Hydrophobic Functional Groups

CC/CHC-O

CF2

CF3

FAS C1s CC/CH

C-O

C=O

CF2

CF3

PVF

FAS C1s

C1s XPS Spectra of as deposited FAS Coating on soda-lime glass substrate.
C1s XPS Spectra of FAS Coating on soda-lime glass substrate after 
1000 hours of UV exposure.

 ~40% reduction in surface Fluorine and ~50° reduction in WCA.

 Fluoromethyl groups detached and replaced by oxygen-containing functional groups. 



Loss of Hydrophobic Functional Groups
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PDMS

CC/CH

Stable Functional Groups

C1s XPS Spectra of as deposited FRE Coating on soda-lime glass substrate. C1s XPS Spectra of FRE Coating on soda-lime glass substrate after 
1000 hours of UV exposure.

 Maintained strong presence of surface PDMS C1s peak.

 Hydrocarbons, and oxygen-carbon bonds either from surface contamination or degradation.

PDMS
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Conclusions
 Fluorinated and non-fluorinated coatings exhibited 

comparable optical properties (~92 T% and ~8 R%), with a 

difference in T% and R% of less than 1%.

 FAS coatings exhibited initially higher WCA values (~120°). 

PDMS coatings demonstrated high WCA (111° ) but crucially, 

maintained hydrophobicity throughout UV exposure.

 Loss of fluorine content can be brought on by UV exposure, 

leading to reduced performance in fluorine-based chemistry.

CC/CH

C-O

C=O

CF2

CF3

PVF

FAS C1s



Further Work
 Increase variance in hydrophobic materials

 FEP and TEOS coatings

 Improve deposition process (dip, wipe, spray)

 Increased degradation testing
 Damp Heat (DH), Abrasion, Outdoor

 Additional characterisation techniques
 Hydrophobicity (Diiodomethane, roll of angle)

 Chemistry (XPS, FTIR, TOF-SIMS)

 Microscopy (SEM, optical)
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